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REAL OPTIONS WITH BIRTH AND DEATH PROCESSES 

 

1- Introduction 

 

In real options most authors use the geometric Brownian motion (GBM) to 

describe the underlying value, or profits, of the investment under analysis3,4. In 

order to model that the profit follows a geometric Brownian motion, authors 

normally assume that the costs and the number of units sold are constant, and 

since a GBM can explain the path followed by the price, the same process can, 

with these constraints, explain the path followed by the profit. Implicitly, 

authors have been assuming that the only critical variable in the investment 

decision analysis is price.  

The success of an investment depends not only on the price of a product 

but also on other variables like the quantity of production. The number of units 

sold is a variable with different characteristics than price. It can be in some 

applications a discrete variable, and its drift and volatility can be affected by 

different factors. Birth and death processes have been used in disciplines like 

biology to explain the evolution of populations. Consequently, this seems a 

relevant way to describe the evolution of the number of units sold in a market 

composed of a population of active costumers. 

 We present a model in which a monopoly investor has the option to 

invest in a new market, in which the number of units sold follows a stochastic 

birth and death process. We present a numerical solution for the value of the 

option to invest and for the trigger level for investment. Also we study the 

sensitivity of the option value to changes in the number of units sold and also 

the sensitivity of the trigger level to changes in volatility.  

 
 

3 To assume that the profit of a certain project can be described through a geometric Brownian 
motion is an unrealistic assumption. A geometric Brownian motion has, by definition, an 
absorbing barrier at zero (although zero is an unobtainable barrier). Profits can, and sometimes 
do, take negative values. Therefore the process is most of the time used for mathematical 
convenience.  
4 There are some exceptions to this rule. Some authors allow for jumps or mean reverting 
processes. Some examples are Gibson and Schwartz (1990), Brennan (1991), Cortazar and 
Schwartz (1994), Bessembinder et al. (1995), Bjerksund and Ekern (1995), Ross (1997), and 
Schwartz (1997). 
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2 - Birth and Death Processes 

 

Birth and death processes are a kind of Markov process in discrete levels, 

which are often used to model the growth of populations. The population size 

is allowed to fluctuate instead of only increasing, as in the simple birth process, 

or only decreasing, as in the simple death process (Cox and Miller (1965); 

Karlin and Taylor (1975); Grimmett and Stirzaker (1992); Kao (1997); Taylor 

and Karlin (1998); Ross (2000)).  

A birth and death process is an example of a discrete event process 

which develops in continuous time. In a birth and death process the discrete 

variable )(tX symbolizes the size of a population at time t and )(uX symbolizes 

the size of the population at a previous time u. The probability 

( )iuXxtXP == )()(  is normally called the transition probability, and in 

general depends on i, x, u and t. The probability ( )iuXxtXP == )()(  will be 

denoted as ),(, tup xi  and should be read as the probability of X being in state x 

at time t knowing that X was in state i at a previous time u. For many Markov 

processes the time dependence of the transition probabilities relates only to the 

length of the interval (t-u), so that for any u, t such that tu <<0 , 

),0(),( ,, utptup xixi −= for all states i, x. In this case the Markov process is said 

to be homogeneous. In this paper we will present mainly a homogeneous birth 

and death process. The only exception will be introduced when we present a 

continuous time, continuous space birth and death process. 

 In any small interval of length tδ , the probability that more than one 

event of either kind occurs is negligible; this means that in each small interval 

either a birth or a death will occur, or nothing will happen, since within a given 

interval two changes are impossible to second order. So, if xtX =)(  then the 

possible changes in the interval [ ]ttt δ+,  are a birth, increasing the population 

size to 1+x ; or a death, reducing the size to 1−x  at time tt δ+ . The 

probability that an event will occur, i.e. a birth or a death respectively, is given 

by 1, +xxp , and 1, −xxp . Since it is a Markov process, these probabilities depend 

only on x, t and tδ , meaning that we may write: 
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( )tottttp xxx δδϕδ +=++ ),(1,                     (1) 

 

( )tottttp xxx δδυδ +=+− ),(1,            (2) 

 

where xϕ  and xυ  are functions of x and t (we will assume in most of our 

exposition that xϕ and  xυ  are independent of time, meaning that the process is 

time homogeneous), and )( to δ represents a negligible remainder term, in the 

sense that if we divide the term by tδ , then the resulting value tends to zero as 

tδ tends to zero. The variable xϕ  is the overall birth rate and xυ  the overall 

death rate. Since the population size must be a non-negative integer, the death 

rate at moment zero is defined as zero, and the probability formulas hold even 

starting with zero individuals. 

The probability that two or more events occur in any small interval is 

given by )( to δ  and the probability that no change occurs in any small interval 

is given by: 

 

( )totttttp xxxx δδυδϕδ +−−=+ 1),(,                    (3)

    

Birth and death processes have mainly been applied in physics and biology but 

they can also describe phenomena like population growth, queuing models, and 

the number of clients using a certain product. 

 

2.2 - Derivation of Birth and Death Processes 

 

Suppose that we want to know the probability of having x individuals at time 

t+δt, keeping in mind that the probability of more than one event occurring is 

negligible over a small enough increment of time. At time t+δt, x individuals 

can be alive if one of the following things happen: at time t, there were x-1 

individuals and one birth occurred; at time t, there were x+1 individuals and 

one death occurred; at time t, there were x individuals and nothing occurred. 
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The probabilities of occurrence of each event, already presented in the previous 

section, can also be presented asTP

5
PTP

,
T

6
TP: 

 

)(1),(
);(),();(),(

,

1,11,1

totttttp
tottttptottttp

xxxx

xxxxxx

δδνδϕδ
δδνδδδϕδ

+−−=+

+=++=+ ++−−  

  

 The Chapman-Kolmogorov equation is normally used to derive the so 

called forward and backward equations. The Chapman-Kolmogorov equation is 

given by: ∑
∞

=

=
0

32,21,31, ),(),(),(
k

xkkixi ttpttpttp . This equation holds for all 

times 321 ttt << and for all states i, k, x. Using the Chapman-Kolmogorov 

equation the probability that at time t+δt we have x individuals alive, knowing 

that at time zero there were i individuals alive, and that the process is time 

homogenous i.e. the transition probabilities are the same for all time intervals 

with the same length, the Chapman-Kolmogorov equation can be written as: 

∑
∞

=

+=+
0

,,, ),()()(
k

xkkixi tttptpttp δδ . Consequently, )(, ttp xi δ+ , becomes TP

7
PTP

,
T

8
TP: 

 

( ) ( )
[ ] )()(1

)()()()()(

,

1,11,1,

tptott
tptottptotttp

xixx

xixxixxi

δδνδϕ
δδνδδϕδ

+−−

++++=+ ++−−   (4) 

 

rearranging the terms: 

 

                                                 
TP

5
PT Note that in the previous section the transition probabilities were presented as pBx,x-1 Band not as 

pBx-1,x B. The probability pBx-1,x B is the transition probability of the situation where the population 
size is x-1 at time t and one birth occurs during δt.  The probability pBx,x-1  Bis the transition 
probability of the situation where the population size is x at time t and one death occurs during 
δt. B B 

TP

6
PT See group team of Open University Unit 8 (1988) for a similar derivation of birth and death 

processes. 
TP

7
PT The Chapman Kolmogorov equation in continuous time covers the process in three time 

points tB1B< tB2B< tB3B. In the present case tB1B=0; tB2 B =t and tB3 B=t+δt. We will omit zero from the 
notation. Therefore we will write p Bi,x B(t+δt) instead of pBi,x B(0,t+δt). 
TP

8
PT The only values of k whose probabilities are non negligible are: k=x-1; k=x+1; k=x. 
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Postulating that at moment zero the death rate is equal to zero, the previous 

equation will hold even when there are no individuals alive at time zero. 

Letting 0→tδ  the Kolmogorov forward equation for the birth and death 

process is as follows: 

 

B )()()()(
)(

,1,11,1
, tptptp
dt

tdp
xixxxixxix

xi νϕνϕ +−+= ++−−          B(5) 

 

The forward equation results from splitting the interval ),0( tt δ+ into ),0( t and 

),( ttt δ+ . Another result can be obtained when the first step of examining the 

transition probability is the short time interval tδ− . Consequently, the time 

interval is now separated into )0,( tδ−  and ),0( t and, similarly to what was 

done above, the transition probability is examined in each period separately 

(notice that the length of the interval is still tt δ+ ). This results in the 

backward equation: 

 

B )()()()(
)(

,,1,1
, tptptp
dt

tdp
xiiixiixii

xi νϕνϕ +−+= −+                 B(6) 

 

The forward equation will tend to be used if there is a single initial state of 

particular importance and we want to know the probabilities at time t for 

various final states. Conversely, the backward equation is normally used if 

there is a single final state of great interest and we want the probability of 

reaching this state at time t for various initial states (Cox and Miller, 1965).  
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2.2.1 - Simple Birth and Death 

 

In the simple birth and death process, it is assumed that each individual, 

independently of all other individuals, gives birth to new individuals, one at a 

time, at rate φ.  Each individual is liable to die, with the lifetime of each 

individual having an exponential distribution with parameter ν.  

 The distribution of the random variable of total population size can be 

derived, recursively, using the differential-difference equations or the 

probability generation function. The differential-difference equations, express 

the probability pBi,xB(t) in terms of pBi,x-1 B(t) and pBi,x+1 B(t). For example, for the birth 

and death process the differential-difference equation are given byTP

9
PT: 

 

)()()()(
)(

,1,11,1
, tptptp
dt

tdp
xixxxixxix

xi νϕνϕ +−+= ++−−     for x=1,2,…         (7-a) 

 

)()(
)(

0,01,1
0, tptp

dt
tdp

ii
i ϕν +=          for  x=0                                  (7-b) 

 

Now we will calculate the probability generating function of the total 

population size. The probability generating function (denoted by ),( tsΩ ) 

contains full information on the probability distribution of X(t) (the size of the 

population at time t). Probability generating functions are used mainly to 

calculate moments and to calculate the distribution of sums of independent 

random variables. The probability generating function is given by 

∑
∞

=

=Ω
0

, )(),(
x

x
xi stpts  (for an ℜ∈s  for which the sum converges) 

In order to calculate the probability generating function of the state 

variable X(t), the differential-difference equations of the simple birth and death, 

are obtained substituting xx ϕϕ →  and xx νν →  in the Kolmogorov forward 

equationTP

10
PT: 

                                                 
TP

9
PT Notice that at time zero the death rate is zero. 

TP

10
PT Since all individuals act independently, if X(t)=x at time t, the probability of one individual 

being born in the interval [ ]ttt δ+,  is given by )( totx δδϕ + . On the other hand, since each 
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)()()()1()()1(
)(

,1,1,
, tpxxtpxtpx
dt

tdp
xixixi

xi νϕνϕ +−++−= +−  for x=1,2…  (8-a) 

 

)(
)(

1,
0, tp

dt
tdp

i
i ν=   for  x=0          (8-b) 

 

 So far, we have assumed that changes in population state are always of 

dimension one (and that the transition rates were not dependent on time). In 

other words, the population size evolves by increasing or decreasing by one 

individual. Let the value of the state variable at an initial time, u, be denoted by 

i, i.e. ( iuX =)( ), and the value of the state variable at a later time t be denoted 

by x, i.e. ( xtX =)( ). We will now assume that the birth and death rates are 

dependent on time. A natural consequence of this is that the process is not time 

homogeneous and therefore ),(, tup xi can no longer be written as ),0(, utp xi − or 

)(, utp xi − suppressing zero. Consequently, the backward equation of the 

general birth and death process (equation (6)) is now given byTP

11
PT: B  

 

B ),())()((),()(),()(
),(

,,1,1
, tupuutuputupu

u
tup

xiiixiixii
xi νϕνϕ +−+=
∂

∂
− −+     B(9) B

 B 

We will also assume that the changes in state can be of dimensionTP

12
PT δi. 

Consequently, the possible changes in the interval δt are a birth, increasing the 

population size to ii δ+ , or a death, reducing the size to ii δ− . In this 

specification the population size is analysed as the position of a continuous 

random variable, but its dynamics are different from those of the GBM. 

                                                                                                                                 
individual is liable to die, independently of giving birth, the probability that one individual dies 
in the time interval [ ]ttt δ+,  is given by )( totx δδν + . 
TP

11
PT See Cox and Miller (1965) page 181 for details. 

TP

12
PT For details on the diffusion limit of a simple birth and death process see Cox and Ross 

(1976). 
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According to Cox and Ross (1976) the backward equation for a continuous 

time continuous state simple birth and death process is given by TP

13
PT:                                 

                                                                                                                                                             

B ),())()((),()(),()(
),(

,,,
, tupuuitupuitupui

u
tup

xixiixii
xi νϕνϕ δδ +−+=
∂

∂
− −+

B

  (10)  

 

If at time u the process is at i, then in the next small time interval the change in 

position will be iδ− , 0 or iδ  with probabilities ν(u)i, (1-ϕ(u)i)-ν(u)i)) and 

ϕ(u)i. Consequently, the instantaneous mean change in position, µ(u) is TP

14
PT: 

 

iuuu δνϕµ ))()(()( −=          (11) 

 

and the variance, Var(u), of the change in position: 

 
2))()(()( iuuuVar δνϕ +=            (12) 

 

According to Cox and Ross (1976) if we now let iδ  approach zero in (10) 

maintaining the mean and variance of the process as defined above, we obtain 

the backward equation for a continuous state simple birth and death, or in other 

words the backward equation for the continuous diffusion of a simple birth and 

death process TP

15
PTP

,
T

16
TP: 

 

B

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
+

++−=
∂

∂
−

2
2

,
2

,
,

2
2

,
2

,
,

,
,

),(
2
1),(

),()(

),(
2
1),(

),()(

),())()((
),(

i
i

tup
i

i
tup

tupui

i
i

tup
i

i
tup

tupui

tupuui
u

tup

xixi
xi

xixi
xi

xi
xi

δδν

δδϕ

νϕ

B

          (13) 

                                                 
TP

13
PT Notice that if in equation (9) we substitute )()( uiui νν = and )()( uiui ϕϕ =  (the rates of 

the simple birth and death) and in (9) we let the increases/decreases in state be of length iδ  
and not 1, we obtain equation (10). It is required that the derivatives exist at the origin. 
TP

14
PT See page 214 of Cox and Miller (1965) for details. 

TP

15
PT It was assumed that our function can be differentiated a number of times and expanded in a 

Taylor series. 
TP

16
PT For a rigorous derivation of the diffusion birth and death see Feller (1959).  
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 rearranging (13): 

 

B

2
2

,
2

,, ),(
2
1))()((

),(
))()((

),(
i

i
tup

iuui
i

tup
iuu

u
tup xixixi δνϕδνϕ

∂

∂
++

∂

∂
−=

∂

∂
−

B

 

 

or using (11) and (12): 

 

B

2
,

2
,, ),(

2
1)(

),(
)(

),(
i

tup
iuVar

i
tup

iu
u

tup xixixi

∂

∂
+

∂

∂
=

∂

∂
− µ   B   (14) 

 

Equation (14) is the backward equation for the continuous diffusion of a simple 

birth and death process. 

 According to Cox and Ross (1976), the stochastic differential equation 

corresponding to the backward diffusion equation (14) is given by (where 

)(uµ and )(uVar are assumed to be constant through time, as it is common in 

for example the Brownian motion processes, i.e.µ andVar respectively): 

 

dzVartXdttXtdX )()()( += µ       (15) 

 

where dz is the increment of a Wiener processTP

17
PT. In equation (15) dX represents 

the change in the population size in a small instant of time δt. This change is 

                                                 
TP

17
PT The stochastic differential equation of the simple birth and death process (15) can be 

obtained comparing the backward equation of the simple birth and death process (14), with the 
backward equation of the geometric Brownian motion. Notice that the corresponding stochastic 
differential equation of the geometric Brownian motion is: ')()()( dztXgVardttXgtdX += µ  

where gµ  and gVar denote respectively the drift and the variance of the process. The 
backward equation if X(t) follows a geometric Brownian motion is: 

B

2
0,

2
20,

0

0, ),(
2
1),(),(

i

ttp
iVar

i
ttp

i
t

ttp xi
g

xi
g

xi

∂

∂
+

∂

∂
=

∂

∂
− µ  Bwhere gµ and gVar are constant 

through time (see page 144 of Wilmott (1998)). Notice that the difference between the former 
equation and our equation (14) is not only the drift and the variance, but also the fact that the 
second term in the right hand side is multiplied by iP

2
P and not, as in (14), by i. The stochastic 

differential equation of the geometric Brownian motion, the first equation in this footnote, has 
the Wiener term dz' multiplied by the standard deviation of the process and the state variable. 
In contrast, the stochastic differential equation of the birth and death, (15), has the Wiener term 
dz multiplied by the standard deviation of the process and the square root of the state variable. 
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explained by two elements, a drift term µdt corresponding to a growth rate 

which is certain, and a normally distributed stochastic term dzVar .    

 

3 – Number of Units as a Birth and Death Process - The Monopolist’s Option 

to Invest 

 

We will now derive the option value function of a risk neutral monopoly 

investor. We will also assume that the profits per unit equal one and that one 

unit per annum is sold to each customer, the number of units sold, denoted by 

M Bt B, follows a stochastic simple birth and death process. Using the stochastic 

differential equation (15) defined for the simple birth and death we can write 

the stochastic differential diffusion equation for M Bt B: 

 

dzMdtMdM ttt αω += .       (16) 

 

where ω is the drift and α the standard deviation of the processTP

18
PT. The mean 

and variance of this new process are as defined by equations (11) and (12) and 

assumed to be constant though time.  

The stochastic process described by equation (16) is significantly 

different from the usual geometric Brownian motion. In the birth and death 

process, each unit sold is stochastically independent of the others, i.e. a 

customer TP

19
PT can enter independently of another, and he can leave at any time. If 

the number of units were explained by a geometric Brownian motion the events 

would be perfectly dependent on each other i.e. when one customer moves they 

all move. Another difference lies in the variance. The variance of a geometric 

Brownian motion is given by 22Mα , but for a birth and death process it is 

given by M2α . Cox and Ross (1976) present the diffusion limit of the birth 

and death process as accurate to describe situations in which changes in state 

are small, as in the geometric Brownian motion, but in which the variance of 

                                                 
TP

18
PT We will omit the time subscripts from now on. 

TP

19
PT Assuming, without any loss of generality, that one customer purchases one unit. 
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the variable, in this case the number of units sold, increases with the state 

variable, although more slowly than if the process was Brownian. 

Let )(0 MP  denote the value of a perpetual option to invest in a 

monopoly market where the number of units, M, follows a stochastic birth and 

death process.  We will construct a portfolio, which does not pay dividends and 

therefore, its return will only be capital gains. Such a portfolio will be formed 

by a long position in the option and a short position in ∆  units of M. Any 

change in this portfolio can be explained by: 

 

dtMrdMMdP ∆−−∆− )()(0 ω                              (17) 

 

where dtMr ∆− )( ω  represents the rate of dividend which M requests on its 

own capital value. Expanding 0dP  using Ito’s Lemma: 

 

2
2

0
2

0
0

)(
2
1)(

)( dM
dM

MPd
dM

dM
MdP

MdP +=          (18)TP

 
PT 

 

Substituting (16) and (18) into (17), recollecting the terms and using 

MdtdM 22 α= , we obtain: 

 

dzMdz
dM

MdP
M

dtMrdtMdt
dM

MdP
Mdt

dM
MPd

M

∆−

+∆−−∆−+

αα

ωωωα

)(

)(
)()(

2
1

0

0
2

0
2

2

       

 

If 
dM

MdP )(0=∆  the two random terms and the two trend terms in the previous 

equation disappear yielding: 

 

dt
dM

MdP
Mrdt

dM
MPd

M
)(

)(
)(

2
1 0

2
0

2
2 ωα −−          (19) 
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Since there is no randomness in this portfolio, its return should be a risk free 

return. Thus: 

 

dtM
dM

MdP
MPrdt

dM
MdP

Mrdt
dM

MPd
M ⎥⎦

⎤
⎢⎣
⎡ −=−−

)(
)(

)(
)(

)(
2
1 0

0
0

2
0

2
2 ωα      (20) 

 

Dividing (20) by dt and rearranging, we obtain the differential equation that 

explains the movements in the value PB0 B(M) of the opportunity to invest: 

 

 0)(
)()(

2
1

0
0

2
0

2
2 =−+ MrP

dM
MdP

M
dM

MPd
M ωα               (21-a) 

 

We will now solve this differential equation to determine the trigger 

value of M at which the monopolist will exercise his perpetual option to invest, 

denoted by M*. We will determine M* as a function of the volatility α, treating 

the variables r and ω as known quantities.  

 

3.1 – Numerical Solution 

 

Since (21-a) has no closed form solution, an innovative numerical solution is 

proposed. There is a problem with direct integration. The equation is singular 

at M=0 (the highest derivative is multiplied by M) and simple integration 

methods fail. Notice that (21-a) can be presented as: 

 

0)(2)(
2

)(
02

0
22

0
2

=−+ MP
M
r

dM
MdP

dM
MPd

αα
ω  

 

At M=0 the term 
M
MrP

2
0 )(2

α
−  fails to be analytical, consequently there is no 

solution at that point. Thus, it is necessary to construct an analytical solution 

for use near M=0. This can be used to calculate the values of PB0 B(M) and its 

derivative at a point near to M=0 (but not at M=0 itself). A numerical routine 

can then be employed to extend the solution to higher values of M. We now 
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derive a solution method, which seems new to the existing real options 

literature. 

We begin by introducing the scaled variable ξ, defined by ξα 2=M , in 

place of M. Then equation (21-a) can be written as: 

 

0)()()(
2
1

2

2

=−+ ξ
ξ
ξωξξ

ξ
ξ rP

d
dP

d
Pd                                   (21-b) 

 

Notice that this form of the differential equation does not explicitly contain the 

volatility parameter α. Thus we can construct universal solutions of this 

equation that apply regardless of the value of α. This is true for both the 

numerical method and the analytical solution around M=0. The parameter α is 

still present, however, since it appears in the boundary conditions. Having 

determined the universal solution, we then apply these boundary conditions and 

thus determine how the trigger M* depends on the value of α. 

Equation (21-b) does not have any explicit solution. As we have said we 

need an analytic solution for application near M=0. We can find one in the 

form of a Frobenius seriesTP

20
PT, namely (where c represents the roots of the 

indicial equation defined below): 

 

∑
∞

=

+=
0

0 )(
n

cn
naP ξξ  

 

The convergence of the power series PB0 B(ξ) is given by the limit of the radius of 

convergence ρ, where the radius of convergence is defined as: 
1

lim
+∞→

=
n

n
n a

a
ρ . If 

ρ=0, then the series diverges for all 0≠ξ ; if ∞<< ρ0 , then the series 

converges if ρξ <  and diverges if ρξ > ; if ∞=ρ , then the series 

converges for all ξ. Even if the limit defined above does not exist, there will 

                                                 
TP

20
PT Some of the features of the solutions of differential equations of most importance for 

applications are determined near their singular points. (See Edwards and Penney,1985, for 
details). 
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always be a number ρ such that one of the three alternatives defined above 

holds.  

To make this series specific to the problem at hand, the Frobenius series 

is substituted into (21-b) to obtain, after rearrangement: 

 

[ ] 0)())(1(
2
1

1 0
1 =−+++++∑ ∑

∞

−=

∞

=

++
+

n n

cn
n

cn
n arcncncna ξωξ     (22) 

 

We now compare the coefficients of the different powers of ξ. If n=-1 

(first term only) we obtain the indicial equationTP

21
PT: 

 

0)1(
2
1

0 =−cca  

 

Since 00 ≠a (the first term must exist), this determines the possible values of 

the index c. According to the Frobenius method, equation (21-b) has two 

solutions. The first solution corresponds to the larger root of the indicial 

equation. In other words, the first solution is obtained by substituting the larger 

root of c in the Frobenius series. The second solution exists only if the 

difference between the two roots is neither zero, nor a positive integer. Here 

there are two roots, c=0 and c=1.Therefore the indicial equation for the lower 

power of ξ is a failing Frobenius case, meaning that the smaller root of this 

equation does not lead to an acceptable approximation of the value of the 

differential equation, (21-b) near the value 0=ξ . This is because the two roots 

differ by an integerTP

22
PT. When the roots differ by an integer, the Frobenius 

method guarantees the existence of the solution in the form of a Frobenius 

series, for the highest root only, in this case c=1. If the two roots are equal, 

there is only one solution, but this is not true in the present case so a second 

solution must be found. In general, the root c=1 gives a solution of the 

Frobenius kind, and the second solution for the root c=0 will be a Frobenius 

                                                 
TP

21
PT The term a B-1 B does not exist by definition. 

TP

22
PT See Edwards and Penney (1985) for a detailed explanation of the Frobenius method. 
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series for c=0 plus the logarithm of the solutionTP

23
PT for c=1. Therefore, in such 

cases a first independent solution can be constructed based on the c=1 root. A 

second independent solution can be constructed from a series solution based on 

c=0, plus the term solution)first (*)ln(ξ . That is (where PB0 B1 and PB0 B2 denote 

the first and second solution)TP

24
PT: 

 

∑
∞

=

+=
0

1
0 )(1

n

n
naP ξξ ,  and  ( ) ∑

∞

=

+=
0

00 )(1ln2
n

n
nPP ξιξξ     (23) 

 

 We now impose a boundary condition on PB0 B to specify the solution 

more closely. 

 As the state variable M goes to zero (and hence 0→ξ ), the value of 

the option to invest has necessarily to decrease. When the state variable reaches 

zero, the option to invest is worthless (so )(0 ξP  must equal 0) TP

25
PT. This is 

automatically satisfied by the )(10 ξP function (notice that if 0=ξ all the terms 

of )(10 ξP will also equal zero), but the )(20 ξP contains a constant term 

0ι (Notice that the first term of )(20 ξP , i.e. when n=0, is undefined if 0=ξ ). 

Therefore, to satisfy this boundary condition the )(20 ξP  term must be absent 

from the solution and the value )(0 ξP must be a multiple of )(10 ξP only.  

 We now find the solution )(10 ξP . There is an arbitrary constant in this 

solution, the value of aB0 B, which we call A (looking at equation (25) below, we 

can see that all the terms can be presented as a product by aB0 B). Since the 

coefficients are linear, all higher coefficients of the solution will have a factor 

of A. Rather than carry this factor in our working, we will calculate the 

particular function )(ξhP  that has a B0 B=1, i.e. 10 0
)(1)( == ah PP ξξ . The general 

solution will then take the form )()(0 ξξ hAPP = . 

                                                 
TP

23
PT In our case the solution when c=1. 

TP

24
PT Where nι denotes the coefficients of the series when c=0. 

TP

25
PT Notice that the birth and death rates, in simple birth and death processes, are linear in the size 

of the population. For example the birth rate is given by xϕ , therefore zero is an absorbing 
state: if the size of the population is ever zero, it will stay zero forever. This will not be 
necessarily true if immigration is allowed. 
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 The remaining terms of the power series are obtained by comparing the 

coefficients of the different powers of ξ in (22) for 0≥n  and c=1. We obtain:  

 

[ ] ,0)1()1)(2(
2
1

1 =−+++++ nn arnnna ω   0≥n                 (24) 

 

Solving (24) and changing the counter from n+1 to n, we obtain: 

 

[ ] ,
)1(

2
1−+

−
= nn a

nn
nra ω  1≥n                    (25) 

 

 This equation can be used to obtain an approximate solution by 

determining iteratively as many of the coefficients in the power series of the 

solution as we desire (from a B0 B we can find a B1 B, then from aB1B we can find a B2B, 

etc)TP

26
PT. We will do this in a numerical programme later. 

 Besides the boundary conditions at 0)( == ξM  the ODE is subject to 

the usual two additional boundary conditions namely value matching (notice 

that both the notional price per unit and the notional annual rate of units sold, 

for any of the M “costumers” served, are assumed to be unity, and therefore 

Mdt represents the cash flow received during dt): 

 

K
r
MMP F
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−

=
ω

)(   or K
r

P F
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−
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ω
ξα

ξ
2

)(                (26) 

 

and smooth pasting: 
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ω
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dP F

2)(      (27) 

 

                                                 
TP

26
PT Notice that the radius of convergence of our power series is given by: 

[ ] ∞=
+−
++

=
∞→ ω

ρ
)1(2

)1)(2(
lim

nr
nn

n
. Consequently, the series converges for all ξ. 
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where after each boundary condition on M we have given the equivalent 

boundary condition for the scaled variable ξ.  

After designing a solution near the origin, our final stage is to design a 

computer programme that determines the solution )()(0 ξξ hAPP =  subject to 

the two boundary conditions and the value of ξ BFB that satisfies the two boundary 

conditions, which is the trigger value at which the monopolist invests.  

 The computer programme begins by calculating )(ξhP . As described 

above this is done by using the Frobenius power series to calculate the function 

at a point near to 0=ξ . The programme then uses a numerical integration 

routine (the Runge-KuttaTP

27
PT scheme) to continue the integration further. In the 

sample programme we have (arbitrarily) integrated numerically as far as 

300=ξ . 

 We now use the numerical solution to calculate the following quantities 

for all values of ξ on the integration rangeTP

28
PT: 
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h ω
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h

2
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At *ξξ =  both these functions should have the same value (since then 

A=AB1 B=AB2 B, and (26) and (27) are satisfied). Consequently the final part of the 

solution is determined by comparing AB1B with AB2 B for values of ξ increasing from 

zero. At the value of ξ where 21 AA −  changes sign we know that ξ* lies 

between that value of ξ and the previous one, so we use linear interpolation 

between the two to estimate the actual value of ξ*.  

The evaluation of ξ* is placed in a loop that does the calculation over a 

range of values for α (and a given fixed value for K). These values are 

recorded. From ξ*, M* can be calculated so we can plot the final graph of M* 

against α.  

                                                 
TP

27
PT See e.g. Edwards and Penney (1985) for a detailed explanation of the Runge-Kutta method. 

TP

28
PT Notice that until now we have the solution of )(ξhP . PB0 B is found by multiplying )(ξhP by 

the arbitrary constant A. This is also valid for the boundary conditions (26) and (27) where 
*)(ξP and its derivative should be substituted by )(ξhP and its derivative multiplied 

respectively by the arbitrary constants AB1B and AB2B. TP
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3.2 – Numerical Results 

 

In Figure 1, we present the value of the monopolist’s opportunity to invest and 

the net present value as a function of the number of units M which can be sold 

in the market place. 

  
Fig. 1 – The parameters are: r=3%, α=25%, ω=1% and K=100 

 

The top line in Figure 1 represents the option value to invest. The 

bottom line represents the net present value. We can see that the two lines meet 

when the number of units sold M equals 5.52. Consequently for number of 

units sold, M, smaller than 5.52, the monopolist will be idle, and the value of 

his opportunity to invest is given by the option to invest (the top line). If the 

number of units sold, M, is larger than 5.52 the value of the investment is given 

by the net present value (bottom line). We can also see from the graph that as 

the number of units sold increases both the value of the option to invest and the 

net present value increase, in a monopoly market where the number of units 

evolves according to a birth and death process.  

For comparison purposes we estimated the trigger, M*, using the model 

of Dixit and Pindyck (1994) in which the underlying variable follows a 
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geometric Brownian motionTP

29
PT. Using the above parameters, we obtain a trigger 

of 7.307. Therefore, the assumption that the underlying variable follows a 

geometric Brownian motion leads to higher option values, and consequently 

higher optimal investment times. This conclusion can be expected just by 

looking at the stochastic differential equation (16) of the number of units sold, 

M. Notice that in (16) the volatility is multiplied by M , and not by M as in 

the stochastic differential equation of the geometric Brownian motion. 

Therefore, the volatility of M increases more slowly with M if the stochastic 

process is a Birth and death, than if it is Brownian. This effect necessarily leads 

to lower option values. 

We reproduce below in Figure 2 the sensitivity of monopolist’s trigger 

level M* to volatility. 

 
Fig. 2 – The parameters are: r=3%, ω=1% and K=100 

 

As volatility increases, the trigger level M* increases. Therefore in highly 

volatile markets, investors will defer the exercise of their rights to invest. 

  

 

                                                 
P

29
P The model presented in page 184 of Dixit and Pindyck (1994) determines the optimal time to 

invest and the option to invest, in a monopoly market where the price of the underlying follows 
a geometric Brownian motion. We are here using that model with the straightforward 
adaptation that the underlying variable is number of units sold, and not price.  
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4 - Conclusion 

 

In this paper we have introduced a different dynamic model for the number of 

units sold, namely a birth and process. 

 Birth and death processes have been used extensively in disciplines like 

biology to describe the evolution of populations. Consequently, this seems a 

relevant way to describe the evolution of the number of units sold by a 

monopolist in a market composed of a population of active costumers. We have 

presented the birth and death process both as a continuous time, discrete state 

process, and also at its limit, as a diffusion process. Considering a market 

where the profits per unit equal one, the notional annual rate of units sold, for 

any of the “costumers” served, are assumed to be unity and the number of units 

follows a stochastic birth and death process, we derive the value of the 

monopoly right to invest in such a market and the decision rule for exercising 

that right. Not being able to find a closed form solution for the option to invest, 

a numerical solution is presented. The sensitivity of the value of the option to 

invest to changes in the number of units sold is as expected. As the number of 

units sold increases, the value of the option to invest in the market also 

increases. The sensitivity of the investment trigger level to volatility was also 

studied. The usual results were obtained, i.e. the investor will tend to delay his 

entry in more volatile markets.  
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